Frequently Asked Questions
    Fresatura Indexabile Generale
  • What is a cutting edge angle and what is a lead angle?
    There are various international and national standards that specify the active geometry of cutting tools very precisely. The “cutting edge angle” is the angle between the main cutting edge of a milling cutter and the plane containing the direction of feed motion. "Lead angle" (or “approach angle”) is the angle complementary to the cutting edge angle, i.e. the sum of these both angles is 90°. For example, for a typical face milling cutter the cutting angle is the angle between the cutting edge and the plane, which the cutter generates. If this angle is 60°, then the lead angle will be 30°. The cutting edge angle and the lead angle are equal only for 45° milling cutters. The term "lead angle" is more commonly employed in the U.S., while "approach angle" is often used in Europe.
  • What is the difference between "face mill" and "shell mill"?
    These two terms relate to different and complementary features of milling cutters. They are not interchangeable. Milling cutters are classified according to the following main factors:
    • Machine surface type: plane, shoulder, 3D-surface, etc.
    • Cutter mounting method: on mandrel or arbor, in holder, directly in spindle
    • Structure: monolithic; assembled
    • Cutting part material: high speed steel, tungsten carbide, ceramics, etc.)
    "Face mill" characterizes a main field of application - milling flats by the cutting face of a mill. "Shell mill" refers to the design configuration of a mill: the mill has a central bore for mounting on arbor. This configuration is typical for face mills.
  • What is the difference between heavy and heavy-duty milling?
    Sometimes the terms “heavy” and “heavy-duty” are used mistakenly as synonyms. In principle, “heavy milling” (and “heavy machining") relates to milling large-sized and heavy-weight workpieces on powerful machine tools and refers more to the dimensions and mass of a workpiece. “Heavy-duty” specifies a degree of tool loading and mainly characterizes a mode of milling.
  • Which cutting conditions are considered as unfavorable and which are unstable?
    Unfavorable cutting conditions include:
    • workpiece with skin (siliceous or slag, for example)
    • significantly variable machining allowance
    • considerable impact load due to non-uniform machined surface
    • surface with high-abrasive inclusions
    Unstable cutting conditions refer to the low stability of a complete system (machine tool, workpiece holding fixture, cutting tool, workpiece) due to:
    • poor tool and workpiece holding
    • high tool overhang
    • non-rigid machine tools
    • thin-walled workpiece
    The terms "unfavorable" and "unstable" are not interchangeable.
  • How is average chip thickness measured?
    In milling, the thickness of chips is not constant and varies during cutting, depending on several factors. The average chip thickness (hm) is a virtual parameter that characterizes mechanical load on a milling cutter and a machine tool. There are different methods for calculating hm. The most common method is to compute it in relation to the half of an angle of engagement, where the latter is the central angle that corresponds to the arc of a contact between a milling cutter and a workpiece.
  • What is high pressure coolant (HPC) and ultra high pressure coolant (UHPC)?
    There are no strict definitions of high and ultra high pressure coolant (HPC and UHPC correspondingly). Traditionally, machine tools feature coolant supply at pressure 10-15 bar (145-217 psi). This level is now considered as low pressure.
    Various modern machining centers have the option to supply coolant at rates of 70-80 bar (1000-1200 psi), which is considered as high pressure coolant. Ultra high pressure coolant relates to pressure values of 100-200 bar (1450-2900 psi) and even higher.
    Some producers of CNC machine tool equipment manufacture what are known as “medium pressure” pumps; these have values of up to 50 bar (725 psi).
  • What are the benefits of milling with high pressure coolant (HPC)?
    Heat generation is a permanent feature of machining, particularly, milling. If heat generation is intensive, the conventional low pressure coolant forms a vapor layer on the surfaces of a tool and a workpiece. This layer acts as heat sealing, producing an insulating barrier and making heat transfer harder, which significantly shortens tool life.
    Pinpointed high pressure coolant penetrates the barrier and helps to overcome the problem. HPC chills chips quickly, making them hard and brittle. The chips become thinner and smaller, and they break away from the workpiece more easily. High-velocity coolant flow removes the chips. This significantly improves chip evacuation and prevents chip re-cutting.
    HPC improves tool life of a cutting edge due to reducing oxidation and adhesion wear and increasing crack strength. HPC improves chip evacuation because the chips diminish in size, and the high-velocity coolant flow takes them away easily. It allows the design of cutters with smaller chip gullet, leading to a higher number of cutter teeth. Effective cooling reduces the temperature in the cutting zone, ensuring an increased width of cut.
    Overall, HPC provides a good solution for increasing cutting speed and feed rate for boosting productivity.
  • What is the difference between milling with high pressure coolant (HPC) supply through a tool body and turning with HPC?
    In turning, a tool has one cutting edge, while a milling tool features several cutting teeth. The number of coolant outlets in the milling tool is greater. An indexable extended flute cutter, where the teeth are produced by sets of replaceable inserts, will require many more outlets.
    There is a specific relationship between pressure, velocity and flow rate for fluid, e.g. for coolant. In milling, HPC supply through the tool body demands appropriate characteristics of an HPC pump to ensure correct flow volume (flow rate) and not only to meet pressure requirements.
  • Does ISCAR provides indexable cutters for high pressure coolant milling in the standard product line?
    Yes, ISCAR provides these tools in the families of milling cutters for machining titanium and high temperature superalloys (HTSA).
  • Why are nozzles used as coolant outlets in HPC indexable milling cutters?
    There are two reasons for using nozzles as coolant outlets: technological and applicative. HPC supply through the body of a cutter requires small-diameter outlets (as well as demands regarding the shape). As manufacture of the outlets via drilling hard steel tools would encounter technological difficulties, screw-in nozzles represent a more practical option.
    If a depth of cut is smaller than the maximum cutting length of an indexable extended flute milling tool, there is no need to supply coolant to the inserts that are not involved in cutting. To improve performance, you can easy unscrew the appropriate nozzles from their holes, and then close the hole by a plug or a standard set screw.
  • Why are a significant number of HPC milling cutters special (tailor-made)?
    The main consumers of HPC milling cutters are manufacturers working with hard-to-cut materials, for example titanium alloys. In many cases, producing parts from the materials requires a high volume of metal removal. To boost productivity, manufacturers often use unique machine tools, and, to reach maximum operational rigidity, they prefer integral tools with direct adaptation to the spindle of a machine - without intermediate tooling such as arbours or holders. Specific tool diameters, cutting lengths, and overhang, as well as adaptations that vary from one manufacturer to another, demand tailor-made HPC milling cutters.
  • Che famiglie sono presenti nella linea di fresatura indexabile ISCAR?
    La linea di fresatura indexabile è composta da frese progettate per coprire le maggiori applicazioni di fresatura: spallamenti, spianature, fresatura di superfici complesse (profilatura), incavatura e scanaltuara, smussatura ecc. Ci sono inoltre famiglie progettate appositamente per fresature con elevati avanzamenti.
  • I loghi di molte famiglie ISCAR iniziano con "HELI" e frasi come "tagliente elicoidale" e "fresatura elicoidale" sono molto spesso enfatizzate. Perchè?
    All'inizio degli anni '90 ISCAR ha introdotto la famiglia HELIMILL di frese con inserti elicoidali. Il tagliente estremamente efficiente è generato dall'intersezione tra la spoglia superiore e la superficie elicoidale del lato dell'inserto. Il design delle frese HELIMILL genera una spogia positiva costante su tutta la lunghezza di taglio. Questo assicura una sensibile diminuzione della potenza assorbita garantendo un taglio dolce. La famiglia HELIMILL ha introdotto un nuovo approccio, ridefinendo gli standard di fresatura a fissaggio meccanico. Il suffisso "HELI" denomina il tagliente elicoidale.
  • Nella gamma ISCAR sono presenti linee di fresatura per alluminio?
    Sì. ISCAR ha sviluppato una gamma completa di frese indexabili specifiche per lavorazioni efficienti di alluminio. Ogni famiglia è dotata di esclusivo design del corpo fresa e di serraggio degli inserti, strutture con cartucce regolabili, ampia gamma di inserti rettificati e lappati ed inserti con riporto in PCD. La maggior parte delle frese sono dotate di refrigerazione interna. La linea ISCAR HELIALU permette lavorazioni con elevate velocità (HSM), assicurando elevati volumi di truciolo.
  • Il termine "estremamente positivo" viene utilizzato molto spesso per le frese indexabili. Cosa significa?
    Generalmente, fa riferimento agli angoli di spoglia della fresa. Le continue innovazioni nella metallurgia delle polveri permettono di poter produrre inserti con taglienti elicoidali con spoglia frontale molto inclinata rispetto al tagliente. Questo genera un angolo di spoglia molto positivo sulla fresa. La definizione "estremamente positivo" enfatizza questa caratteristica. Nota: la definizione rispecchia l'attuale stato dell'arte. In quest'ottica, l'estremamente positivo di oggi verrà considerato normale in futuro.
  • ISCAR fornisce un'ampia gamma di gradi in metallo duro. Dove si possono trovare informazioni di base sulle proprietà di un determinato grado, velocità di taglio e gamma applicativa?
    ISCAR offre cataloghi elettronici e cartacei, al cui interno sono presenti le guide con le informazioni sulla struttura del grado (tipologia di substrato, rivestimento), la gamma applicativa conforme agli standard ISO e le velocità di taglio.
  • Le frese indexabili sono dotate di refrigerazione interna?
    La maggior parte delle frese indexabili introdotte di recente sono dotate di refrigerazione interna direzionata su ogni tagliente. 
  • Ci sono frese che non hanno la refrigerazione interna. Nel caso in cui fosse necessaria, come si possono modificare le frese?
    Nella maggior parte dei casi la modifica non è necessaria. Infatti ISCAR propone viti di serraggio con ugelli regolabili per fornire una semplice soluzione al problema. Le viti non solo bloccano la fresa sull'attacco, ma assicurano un'efficiente refrigerazione nella zona di taglio. L'ugello, la parte mobile della vite, permette una semplice regolazione in base alle specifiche necessità di lavorazione.
  • In che modo è possibile garantire la corretta forza di serraggio degli inserti?
    Per le frese indexabili, ISCAR fornisce due tipologie di chiavi dinamometriche: con valori regolabili o fissi. Il primo tipo permette il settaggio entro una data gamma, mentre il secondo tipo è pre-settato su un valore fisso. Le forze di serraggio sono disponibili in cataloghi e guide tecniche. Inoltre, questi dati sono marcati anche sul corpo fresa.
  • Cosa è meglio per controllare la produttività: modificare l'avanzamento o la profondità di taglio entro limiti accettabili?
    Ovviamente dipende da molti fattori. Comunque, in generale, a parità di volume di truciolo, aumentare l'avanzamento con minori profondità di taglio è più favorevole rispetto alla combinazione opposta perchè generalmente assicura maggiori durate.
  • Come si possono trovare soluzioni più efficienti per una specifica applicazione?
    Se si conoscono i parametri, ITA (ISCAR Tool Advisor), è uno strumento molto efficiente. Il software è gratuito ed disponibile anche per dispositivi mobili. Nel caso in cui si necessitino di maggiori dettagli e informazioni, contattare direttamente ISCAR per assistenza.
  • What is turn-milling?
    Turn-milling is a process whereby a milling cutter machines a rotating workpiece. This method combines milling and turning techniques and has many advantages.
  • What are the advantages of turn-milling comparing with classical turning?
    • In turning, machining non-continuous surfaces features interrupted cutting that results in unwanted impact load, poor surface finish and early tool wear. In turn-milling, the tool is a milling cutter that is intended exactly for interrupted cuts with cyclic load.
    • When turning materials with long chips, chip disposal is difficult and identifying the correct chipbreaking geometry of a cutting tool is not simple. The milling cutter used in turn-milling generates a short chip that considerably improves swarf handling.
    • In turning eccentric areas of rotating components (crankshafts, camshafts, etc.), off-center masses of the components cause unbalanced forces that adversely affect performance. Turn-milling with its low rotary velocity of a workpiece significantly diminishes and even prevents this negative effect.
    • In turning, the rotation of heavy-weight parts, which defines the cutting speed, is limited by the characteristics of the main drive. If the drive does not allow rotation of large masses with required velocity, then the cutting speed will be far from the optimal range; and will resulut in low turning performance. Turn-milling provides a way to overcome the above difficulties effectively.
  • How I can calculate cutting data for turn-milling?
    The calculation method is shown in the March 2017 issue of “Welcome to ISCAR’s World”, a collection of articles. The electronic version of the issue can be found also on ISCAR’s site catalogs. If necessary, please contact our local representatives in your area – they will be glad to help with this issue.
    Profilatura
  • What is the difference between profile milling, milling contoured surfaces and form milling?
    Generally, these definitions mean the same thing and relate to milling 3-D surfaces. Such kind of machining is often named in shop talk as simply profiling.
  • Which industrial sectors are characterized by a great number of profile milling operations?
    First, it is the Die and Mold industry, then Aerospace but almost every branch requires profile milling tools in a varying degree, too.
  • Which types of tools are the most popular for profile milling?
    In rough milling for “pre-shaping” further 3-D surfaces, process planners use different tools and even general-duty 90° milling cutters. Fast Feed milling cutters* are very efficient means for high-efficiency roughing. However, most of profile milling operations relate to toroidal and ball nose milling cutters because they ensure correct generation of a needed shape in every direction.

    * refer to the appropriate section in FAQ session
  • Are inserts with chip splitting action in ISCAR’s profile milling products?
    Yes. Moreover, exactly from MILLSHRED, a family of indexable milling cutters with round inserts, the serrated cutting edge of ISCAR milling inserts was started its way.
  • What is the effective cutting diameter of a profile milling tool?
    In profile milling, sue to the shaped, non-straight form of the tool, a cutting diameter is a function of a depth of cut; and it is not the same for different areas of the tool cutting edge that is involved in milling. The effective diameter is the largest true cutting diameter: maximum of the cutting diameters of these areas. In calculating cutting data, it is very important to consider the effective diameter, because the real cutting speed relates to the effective diameter, while the spindle speed refers to the nominal diameter of a tool.
  • Which types of profile milling tools ISCAR provides?
    ISCAR line of profile milling tools comprises Fast Feed*, toroidal, and ball nose cutters in the following design configurations:
    • tools with indexable inserts
    • solid carbide endmills
    • replaceable milling heads with MULTI-MASTER* adaptation

    * refer to the appropriate section in FAQ session
  • What is restmilling?
    Productive milling proposes applying more durable and rigid tools for high metal removal rate. In many cases the form and the dimensions of the tools do not allow for a cut in some area; for example, the corners of a die cavity. The remainder of the material in the areas is removed by restmilling – a method under a technological process where a tool of smaller diameter cuts the areas with residual stock.
    Frese Integrali
  • Does ISCAR provide solid carbide endmills for machining all groups of engineering materials?
    ISCAR’s SOLIDMILL line consists of various families of solid carbide endmills that are intended for machining different materials: steel, stainless steel, cast iron, etc. The line offers a rich variety of tools covering all application groups under ISO classifications P, M, K, N, S and H.
  • Which types of solid carbide endmills does ISCAR offer as standard products?
    ISCAR’s standard solid carbide endmill products include 90° endmills, ball nose cutters, and tools for high feed (fast feed) milling, chamfering, and deburring. ISCAR also offers families of endmills designed specifically for high speed machining that apply trochoidal milling techniques.
  • What are the advantages of the trochoidal milling method?
    Usually, trochoidal milling is applied to machining slots and pockets. In trochoidal milling, a fast-rotating tool moves along an arc and “slices” a thin but wide layer of material. When the layer is removed, the cutter advances deeper into the material radially and then repeats the slicing. This method ensures uniform tool engagement and stable average chip thickness. The tool experiences constant load, causing uniform wear and predictable tool life. The small thickness of sliced material significantly reduces heat impact on the tool and ensures an increase in the number of tool teeth. This method results in a very high metal removal rate with considerably decreased power consumption and improved tool life.
  • What is the secret of CHATTERFREE geometry?
    CHATTERFREE represents a design utilized in several ISCAR solid carbide endmill families. The main CHATTERFREE features are unequal angular pitch of cutter teeth and variable helix angle. This concept results in substantially reducing or even eliminating vibrations during cutting, which significantly improves performance and tool life.
  • What is a variable helix?
    The term "variable helix" refers to the helix angle in vibration-free designs of solid carbide endmills (SCEM), as are found in ISCAR CHATTERFREE products. A typical SCEM features helical teeth and the helix angle determines the cutting edge inclination of a tooth. In traditionally designed endmills, the helix angle is the same for all flutes, but it varies in vibration-free configurations.
    The term “variable helix” is commonly understood to represent two design features: 1) Combining flutes with unequal helix angles where the angles are constant along every flute.
    2) Helix angle varies along the flute.
    However, the term “variable helix” is correct only in relation to design feature 1 and the term “different helix” should be used to specify design feature 2.
  • Why are FINISHRED endmills often referred to as “Two in One”?
    FINISHRED endmills feature four flutes, two serrated teeth and two continuous teeth. This facilitates the integration of two cutting geometries into a single tool: rough (serrated teeth with chip splitting action) and finish (continuous teeth), so gaining the “two in one” appellation. By running at rough machining parameters, semi-finish or even finish surface quality can be achieved. One such tool can replace two rough and finish endmills, reducing cutting time and power consumption while increasing productivity.
  • Does ISCAR provide instructions for regrinding solid carbide endmills?
    Yes. All catalogues, as well as relevant technical leaflets and brochures, contain instructions for regrinding solid carbide endmills, and ISCAR local representatives are available to advise on this issue.
  • What is a length series?
    Solid carbide endmills of the same type and the same diameter often vary in overall length within a family. According to the length gradation, there are short, medium and long series. Additional series such as extra-short or extra-long can also be applied. As a general rule, short-length endmills ensure highest strength and rigidity whereas extra-long solid carbide endmills are intended for long-reach applications.
  • What is a slot drill?
    “Slot drill” is a name of an endmill that can cut straight down. Slot drills have at least one center cutting tooth and are used mainly to form key slots. Slot drills are typically two-flute mills, but they can have three and even four flutes.
  • ISCAR ball nose solid carbide endmills have two or four flutes (teeth). How should the correct number of flutes for a ball nose endmill be chosen?
    The all-purpose four flute ball nose solid carbide endmills provide a universal and robust production solution for various applications, especially for semi-finish and finish operations. Two flute endmills have a larger chip gullet, which makes them more suitable for rough machining as they ensure better chip evacuation. Two flute tools are also considered to be a workable method for fine finishing due to a lower accumulated error, which depends on the number of teeth. When milling with shallow depth of cut, calculating feed per tooth should take into consideration only 2 effective teeth; as the advantages of a multi-flute design are diminished.
  • Does the ISCAR solid carbide endmill line include miniature endmills?
    ISCAR solid carbide endmill lines include endmills with diameters of tenths of mm. For example, the standard ball nose endmills, which are intended for processing ribs for hard materials, start from a minimal diameter of 0.1 mm.
  • If ISCAR provides solid carbide endmills for machining all groups of engineering materials?
    Yes. ISCAR’s SOLIDMILL LINE consists of various families of solid carbide endmills that intended for machining different materials: steel, stainless steel, cast iron, ets. The line proposes a rich variety of tools, which covers all application groups according to ISO classification: P, M, K, N, S and H.
  • Which types of SCEM ISCAR offers as standard products?
    The majority are 90° endmills, then – ball nose cutters, tools for high feed (fast feed) milling, chamfering and deburring. Also, there are families of endmills that are designed specifically for high speed machining, in particular, by trochoidal milling technique.
  • Why FINISHRED endmills are often called as “Two in One”?
    Usually, the FINISHRED endmills feature 4 flutes, two serrated teeth and two continuous teeth. Thus, they combine two cutting geometries: rough (the serrated teeth with ship splitting action) and finish (the continuous teeth). This is a reason why FINISHRED SCEM are called “Two in One”. They enable running at rough machining parameters, resulting in semi-finish or even finish surface quality. Such a single tool (“One”) can replace the rough and finish endmills (“Two”), dramatically reducing cutting time and power consumption, and increasing productivity.
  • Does ISCAR provides instructions for regrading solid carbide endmills?
    Yes. Every catalogue and various technical leaflets and brochure contain this kind of information. Needless to add, that our local representatives are ready to help in every issue, which relates to regrinding SCEM.
  • Does ISCAR SCEM line propose miniature endmills?
    The answer depends on a definition, what is miniature. There is no distinct border between “mini”, “micro”, “miniature” and so on, in many slogans or tool brand names. Of course, despite the lack of strict and commonly accepted definitions, everyone realizes the range of diameters, which relates to these terms. ISCAR SCEM lines includes endmills featuring diameters of tenths of mm. For example, the standard ball nose endmills, which are intended for processing ribs for hard materials, start from minimal diameter 0.1 mm.
    MULTI-MASTER
  • Come è montata la testina sullo stelo?
    La testina ha due superfici: un cono corto una superficie posteriore non tagliente che determina il posizionamento sullo stelo. Il cono assicura elevata concentricità e la superficie posteriore il contatto frontale. Quindi la parte posteriore della testina è composta da due parti fondamentali: conica e filettata. Per il montaggio, la testine viene inizialmente posizionata a mano e serrata con la chiave.
  • Quali sono i vantaggi del contatto frontale?
    Prima di tutto, il contatto frontale incrementa rigidità e stabilità dell'assemblaggio per resistere ai carichi molto comuni in fresatura. Questo assicura un taglio stabile, minimizza le vibrazioni e riduce la potenza assorbita. Inoltre il contatto frontale assicura elevata ripetibilità della sporgenza della testina rispetto allo stelo. Per questo, non sono necessari tempi di setup dopo la sostituzione della testina, che può essere montata con lo stelo in macchina.
  • A cosa si riferisce il "gap iniziale"?
    La prima fase del serraggio viene effettuata a mano. Quando la testina si ferma, rimane un piccolo spazio (gap) tra i piani dello stelo e della testina. Da questo momento è possibile serrare la testina solo utilizzando la chiave. Il serraggio della testina causa una deformazione elastica nell'area di contatto dello stelo in direzione radiale. I gap di cui sopra viene definito "iniziale" ed è un fattore molto importante del sistema MULTI-MASTER. Il valore è nell'ordine di decimi di millimetro, in base alla dimensione del filetto.
  • Perché il filetto MULTI-MASTER ha un profilo speciale?
    Le testine MULTI-MASTER sono realizzate in carburo di tungsteno. Nonostante sia un materiale estremamente duro e resistente al calore, ha minori forze d'impatto rispetto, per esempio, all'acciaio super-rapido(HSS). Quindi, progettando un particolare filettato in carburo di tungsteno, minimizzare gli stress è uno dei principali problemi da risolvere.
    Inoltre, la connessione filettata MULTI-MASTER ha dimensioni relativamente ridotte: i diametri nominali dei filetti variano entro 4-15 mm. Queste misure e la necessità di sopportare i carichi di lavoro, possono limitare l'altezza del profilo del filetto. Quanto descritto rendono problematico l'utilizzo di filetti standard e richiedono quindi un design specifico del filetto che soddisfi le specifiche di connessione. Questi sono i motivi che hanno spinto ISCAR a progettare un filetto specifico per la linea MULTI-MASTER.
  • Quali tipologie di testine MULTI-MASTER offre ISCAR?
    • Testine con varie forme - 90°, 45°, 60° ecc
    • Testine per profilatura ball nose, toroidali, con raggi concavi ecc
    • Testine per incavatura e scanalatura per anelli di tenuta, OR, cave a T ecc
    • Testine per filettatura
    • Testina per centrinatura
    • Testine per incisioni
    Le testine hanno un numero differente di denti (eliche), angoli d'elica e gradi di precisione, così come geometrie di taglio per lavorazioni efficienti di un'ampia gamma di materiali
  • What is an economy-type end milling head?
    There are two types of MULTI-MASTER end milling heads.
    The first type of MULTI-MASTER end milling head is the same as the ISCAR standard solid carbide endmills but differs in overall and cutting edge lengths. A major advantage of this type of end milling heads is that there is a large variety to choose from (practically all the standard line of the solid mills). In finishing and milling hard materials, increasing the number of flutes makes cutting more stable and productive. The heads of the first type are produced from stepped cylindrical blanks by grinding.
    The second type of MULTI-MASTER end milling heads is the economy version; it is shaped beforehand by pressing and sintering with a small oversize. Further grinding defines the final shape of a head and its accuracy. The heads of this type have a high-strength tooth that makes it possible to substantially increase the feed per tooth in comparison with the heads of the first type. Pressing technology enables production of different complicated shapes; although making these from the stepped blanks is problematic. The economy-type heads have only two teeth.
  • Why do the MULTI-MASTER keys have two openings?
    Due to the design features of the heads, one of the openings, similar to openings of ordinary engineering wrenches, is intended for the multi-flute heads of the first type of MULTI-MASTER end milling head (see above) and the appropriate cylindrical blanks. The second shaped opening is designed for the economy-type heads.
  • La famiglia MULTI-MASTER ha anche soluzioni per foratura?
    Sì. La famiglia MULTI-MASTER offre testine a 45°, 30° e 60° progettate non solo per smussi, ma anche per fori pilota e lamature. Inoltre, sono disponibili testine per centrinatura.
  • Is a center drilling head that is made from solid carbide, really a reasonable solution? There are various low-cost double-sided standard combined center drills and countersinks produced from HSS.
    When compared to the above-mentioned HSS combined drills and countersinks, the center drilling heads allow for a considerable increase in tool life. The heads are operated under higher cutting data and thus lead to higher productivity. Therefore, we advise checking the current production cost and then making a decision, taking all relevant factors into account.
  • What is the accuracy of the heads?
    The nominal diameter of the normal accuracy end milling heads has the following tolerance limits: e8 for multi-flute heads produced from blanks and h9 for the economy- type heads. The precise heads for finish profiling are made with tolerance limits for diameter h7 and the heads for milling aluminum – h6. The diametric tolerance for the cylindrical cutting area of the heads for chamfering, spot drilling and countersinking is h10.
  • What is the repeatability tolerance of MULTI-MASTER heads?
    As mentioned in the answer to question 2, one of the main advantages of the face contact is high repeatability, which ensures closed tolerance for the head overhang with respect to the contact face of a shank. The overhang limits are ±0.01 mm for the majority of the end milling heads. 
  • Does ISCAR offer MULTI-MASTER heads intended for milling hardened steel? 
    Yes. These heads are made from a high-strength and wear-resistant submicron carbide grade; and they have tight dimensional tolerances.
  • What are the main types of shanks and for which purpose should they be used?
    The shanks are available in different versions: smooth cylindrical and with a neck. The neck can be straight or conical.
    The smooth shanks and the shanks with a straight neck, called Type A shanks in MULTI-MASTER’s designation system, are general purpose shanks and are used for a variety of applications. There is also a reinforced version, intended mainly for milling keyways or high-feed milling (HFM). It is distinguished by flats on a shank body that make it suitable for clamping in Weldon-type adapters.
    Type B is a reinforced shank with a relatively short conical neck which has a taper angle of 5° on the side. It is characterized by increased strength of the durable body that defines its main application: heavy-duty machining.
    Where is type C?
    For long-reach machining at high overhang, the Type D shank with a long conical neck can offer a good solution. It has a taper angle of 1° on the side and is designed primarily for milling deep pockets and cavities, high steep walls, etc. This shank should not be used in heavy-load conditions.
    For short-reach applications, the MULTI-MASTER family offers shanks with a collet adaptation. These are mounted directly into a collet chuck instead of the spring collet. The direct mounting increases rigidity and accuracy, and reduces the overall overhang relative to the datum face of a machine tool spindle.
    The MULTI-MASTER family also includes smooth steel cylindrical shanks of considerable overall length (at least 10 diameters of the shank). These are intended primarily for producing specially tailored tools of various configurations by additional machining of the shanks in order to form the required shape. Such machining can be performed even directly by the customer. In fact, they are the blanks with an internal T-thread. For the convenience of additional machining operations (turning, sometimes external grinding, etc.), the shanks are provided with a center hole in the rear face.
    The MULTI-MASTER family contains a variety of extensions and reducers for connecting with other ISCAR systems of modular tooling (for example, FLEXFIT)
  • From what materials are the shanks made? How should the correct material be chosen?
    The shanks are produced from the following materials: steel, tungsten carbide and heavy metal (an alloy containing 90% and more of tungsten).
    In the context of functionality, a steel shank is the most versatile. Due to the considerable stiffness of tungsten carbide, a carbide shank is intended primarily for finishing and semi-finishing, machining at high overhang and milling internal circumferential grooves. In case of unstable cutting, applying a heavy metal shank can give good results because of the vibration-proof properties of heavy metal. However, heavy metal shanks are not recommended for heavy-duty machining.
  • Are the MULTI-MASTER tools suitable for coolant supply directly through the tool body?
    Yes, there is a design of the shanks with holes for internal coolant supply.
  • Can the MULTI-MASTER shanks be held in heat shrink chucks and collets?
    The carbide or heavy metal shanks (see the answer to question 14) are suitable for toolholding by the heat shrink method. As for the steel shanks, clamping them into heat shrink chucks and collets is not recommended.
  • Is it necessary to lubricate T-threads when mounting the heads into a shank?
    No. Do not apply lubricants to the MULTI-MASTER T-thread connection!
    Elevati Avanzamenti
  • Che tipologie di frese per elevati avanzamenti produce ISCAR?
    La linea di frese per elevati avanzamenti ISCAR comprende frese indexabili, Multi-Master e frese integrali in metallo duro.
  • Quale operazioni di fresatura è la più indicata per lavorazioni con elevati avanzamenti?
    Le operazioni più indicate per lavorazioni con elevati avanzamenti sono la sgrossatura in spianatura, creazione di tasche e cavità.
  • Qual è il significato di "FFF" che si trova spesso nelle presentazioni tecniche ISCAR?
    "FFF" fa riferimento alla spianatura con elevati avanzamenti.
  • di acciai e ghise. Questa tecnica può essere utilizzata anche per materiali difficoltosi come titanio o superleghe?
    Le frese per elevati avanzamenti possono essere utilizzate anche per materiali difficoltosi.
    La geometria di taglio in questi casi è differente rispetto alle geometria progettata per acciai e ghise. Inoltre, l'avanzamento al dente sarà inferiore rispetto alle lavorazioni di acciai e ghise; in qualsiasi caso sarà decisamente superiore rispetto ai parametri consigliati per il metodo tradizionale
  • Cosa sono le frese MF?
    MF sta per "Avanzamenti Moderati": moderati rispetto ad "Elevati", ma sicuramente maggiori rispetto alla fresatura tradizionale. Il metodo MF è pensato per maggior produttività su macchine con poca potenza, fresatura di pezzi pesanti ecc
    Incavatura e Scanalatura
  • Quali frese vengono utilizzate per lavorazioni incavatura?
    In generale si possono utilizzare molte tipologie di frese per incavature e scanalatura. Comunque sole le frese con taglienti frontali e periferici sono progettate appositamente per incavatura e scanalatura. ISCAR propone una linea di frese dedicata per incavatura e scanalatura.
  • Qual è la differenza tra incavatura e scanalatura?
    Molto spesso sono sinonimi. Incavatura fa riferimento ad un'apertura stretta, relativamente lunga, principalmente longitudinale; scanalatura fa riferimento ad un canale circolare (chiamato "sottosquadro") o elicoidale.
  • Slot milling tools are often referenced as slotting tools. Is this correct?
    The word “slotting”, commonly known as “slot milling”, is widespread in shop talk but the two actions are not identical or interchangeable. Slotting refers specifically to a stage in planning or shaping – a machining process where a single-point cutting tool moves linearly and piston wise, and a workpiece is fixed or moves only linearly concurrent with the tool.
  • Perchè le frese per incavatura vengono definite anche frese frontali e laterali?
    Le frese per incavatura hanno taglienti frontali e laterali per la lavorazione simultanea del fondo e delle pareti della cava.
  • Quali sono le principali tipologie di frese per incavatura?
    Queste frese hanno diverse tipologie di attacco. Possono essere con o senza flangia o, in alternativa, possono essere testine intercambiabili per frese modulari.
  • Qual è il programma ISCAR per incavatura?
    ISCAR ha sviluppato frese per incavatura in varie tipoogie:
    - Frese indexabili
    - Frese assemblate Multi-Master con teste intercambiabili
    - Frese assemblabili T-SLOT con testine intercambiabili in metallo duro
  • Quali cave vengono definite strette?
    Una regola empirica definisce "stretta" una cava con spessore massimo di 5 mm e profondità di almeno 2.5 volte lo spessore.
    Frese ad Elica Estesa
  • Perchè frese "ad elica estesa"??
    La parte tagliente di una fresa ad elica estesa è composta da una composizione di inserti posizionati gradualmente. Rispetto ad una fresa "normale" la cui lunghezza di taglio è limitata dal tagliente dell'inserto, la lunghezza di taglio delle frese ad elica estesa è decisamente maggiore - è estesa dalla composizione di inserti.
  • Quali sono gli altri termini tecnici per le frese ad elica estesa?
    Le frese ad elica estesa vengono definite anche frese a tagliente lungo e frese a riccio.
  • Quali sono le principali applicazioni delle frese ad elica estesa?
    Le frese ad elica estesa sono progettate per sgrossature con elevate performance: spallamenti elevati, cavità profonde ecc
  • Le frese ad elica estesa possono essere utilizzate in operazioni di semi-finitura?
    Sì. Ci sono soluzioni che assicurano questo tipo di lavorazione. Per esempio, le frese ISCAR HELITANG FIN LNK montano inserti tangenziali rettificati sul perimetro progettati appositamente per semi-finitura.
  • Perchè per molti tipi di frese ad elica estesa sono disponibili inserti chip splitting?
    Le frese ad elica estesa lavorano con carichi molto elevati. La geometria chip splitting è molto spesso integrata per migliorare sensibilmente le performance di lavorazione.
    • La geometria chip splitting assicura un truciolo molto piccolo, di semplice evacuazione che ne assicura un'ottima gestione.
    • Inoltre la geometria chip splitting assicura una decisa diminuzione delle vibrazioni generate.
    • In molti casi riduce anche le forze di taglio e la potenza assorbita, portando a minor calore generato.
    • Il truciolo di piccole dimensioni inoltre tende a non essere rilavorato, assicurando lavorazioni più produttive e maggiori durate.
  • Quali sono le configurazioni delle frese ad elica estesa ISCAR?
    La linea standard ISCAR di frese ad elica estesa comprende varie configurazioni:
    • Frese a manicotto
    • Frese con stelo cilindrico (liscio o con piani, conosciuto come Tipo Weldon)
    • Frese con attacco conico (7:24, HSK)
    • Attacco poligonale conico con teste intercambiabili con connessione FLEXFIT
  • Le frese ad elica estesa ISCAR sono dotate di refrigerazione interna?
    La maggior parte delle frese ad elica estesa ISCAR sono dotate di refrigerazione interna.
  • ISCAR consiglia di utilizzare frese ad elica estesa per lavorazioni di titanio?
    Sì. Le lavorazioni di titanio solitamente sono caratterizzate da elevati volumi di truciolo. Le frese ad elica estesa assicurano elevati volumi con ottime performance, portando una sensibile riduzione dei tempi ciclo.
    Fresatura di Ingranaggi
  • Does ISCAR provide tools for milling gears and splines?
    ISCAR’s current tool program, for milling spur gears with straight teeth and splines, has been developed to include three types of cutter:
    • cutters with indexable inserts
    • cutters with replaceable cutting heads based on the T-SLOT concept
    • cutters with replaceable MULTI-MASTER cutting heads
  • For which method of generating teeth are ISCAR’s milling tools intended?
    At present, ISCAR produces tools to generate tooth profiles by form milling.
  • When talking about generating a tooth profile, what is meant by “form milling”?
    Form milling is one of the methods for generating tooth profiles. In form milling, a milling cutter with a working shape like the contour of a tooth space, machines every tooth individually; and a workpiece is indexed through a pitch after generating one space.
  • Are there other methods of generating tooth profiles, apart from form milling?
    The principal methods (in addition to form milling) include gear hobbing, which uses a hob, a cutter with a set of teeth along a helix that mills the workpiece and that rotates together with the workpiece in a similar way to a worm-wheel drive; gear shaping with the use of a gear-shaping cutter, a rotating tool that visually resembles a mill; and by power skiving - a technique that combines gear milling and gear shaping. There are also other methods of generating teeth profiles, such as gear broaching, gear grinding, and gear rolling.
  • Is milling gear teeth the final operation of a gear-making process?
    In general, milling gear teeth is not the final operation in the gear-making process. After this operation, it is necessary to remove burrs and then the sharp edges of the teeth should be rounded or chamfered, for better engagement. Gear rounding, and gear chamfering operations are necessary to avoid quenching gears with sharp edges, which may cause various micro cracks that affect gear life. In addition, milling teeth ensures parameters that feature only gears of relatively low accuracy. As manufacturing precise gears demands tougher characteristics of accuracy and surface finish, other processes such as gear shaving, gear grinding, gear honing, etc., are also applied.
  • Usually, form gear milling relates mainly to individual and low-batch production. Why do manufacturers of general-purpose cutting tools, including ISCAR, include form gear milling cutters in their program for standard lines?
    With batch manufacturing, milling gear teeth is made on specific gear hobbing machines as gear hobbing productivity is substantially higher. However, advanced multifunctional machine tools increasingly widen the range of machining operations that can be performed. Technological processes developed for these machines are oriented to maximize machining operation for one-setup manufacturing, creating a new source for more accurate and productive manufacturing. Milling gears and splines is one of the operations suitable for performing on the new machines.
    These new machines require appropriate tooling and manufacturers of general-purpose cutting tools are reconsidering the role of gear-milling cutters in their programs for standard product lines.
  • What is the module in gearing?
    The module (modulus) is one of the main basic parameters of a gear in metric system. It is measured in mm. The module m of a gear with pitch diameter d and number of teeth z is the ratio of the pitch diameter to the number of teeth (d/z).
  • Does the inch (Imperial) system of gearing also use the module as a basic parameter in gearing?
    The inch (Imperial) system operates another basic parameter: the diametral pitch. This is the number of gear teeth per one inch of the pitch diameter. If a gear has N teeth and it features pitch diameter D (in inches), diametral pitch P is calculated as N/D. Sometimes, when specifying gears in inch units, the so-called English module is used. In principle, this module has the same meaning as the module in the metric system, e.g. the ratio of the pitch diameter and the number of teeth; however, the pitch diameter should be taken in inches and not in millimeters like in the metric system.
  • What is the difference between gear and splines?
    Gears in a gear train are intended for transmitting rotational movement between 2 shafts (while the axes of the shafts are not always parallel) and, in most cases, this transmission is combined with changing torque and rotational speed. The gears are used also for transforming rotational movement into linear movement. A splined joint is a demounted connection of two parts to transfer the torque from one to another. The torque is not changed here.
  • What is the difference between splines and serrations?
    Within this context, serrations represent a type of spline. The serrations feature V-shaped space between teeth. They are commonly used in small-size connections.
    Scanalatura
  • Qual è la prima scelta per Scanalature Gravose?
    • Per lavorazioni di scanaltura, utilizzare gli inserti DOVEIQGRIP TIGER con larghezze di 10 - 20 mm
    • Per lavorazioni di torni-scanalatura, utilizzare gli inserti SUMO-GRIP TAGB con larghezze 6 - 14 mm
  • Qual è la miglior geometria per lavorazioni di materiali duttili e gommosi?
    Utilizzare le geometria "N" . Disponibile con larghezze 3 - 8 mm per inserti esterni GIMN e larghezze 2 -5 mm per inserti interni GEMI/GINI.
  • Quali sono i gradi consigliati per materiali ISO-M / ISO-P?
    • La prima scelta per molte applicazioni è il grado IC808.
    • Se si necessita di un grado più duro con maggior resistenza all'usura utilizzare il grado IC807.
    • Se si necessita di un grado più tenace con maggior resistenza agli impatti (tagli interrotti) utilizzare il grado IC830.
  • Quali sono i gradi consigliati per materiali ISO-M / ISO-P?
    • La prima scelta per molte applicazioni è il grado IC808.
    • Se si necessita di un grado più duro con maggior resistenza all'usura utilizzare il grado IC807.
    • Se si necessita di un grado più tenace con maggior resistenza agli impatti (tagli interrotti) utilizzare il grado IC830.
  • Qual è il miglior grado per lavorazioni di materiali ISO-S (superleghe)?
    • La prima scelta è il grado IC806.
    • Per materiali ISO-S più duri (HRC>35) utilizzare il grado IC804.
  • Quali utensili di scanalatura vanno utilizzati su macchine automatiche?
    Utilizzare gli esclusivi utensili con serraggio laterale GEHSR/GHSR, con possibilità di serraggio frontale e posteriore per un accesso molto più semplice su macchine automatiche (rispetto al convenzionale fissaggio superiore).
  • Quali sono i gradi/geometrie consigliate per scanalatura e torni-scanalatura di ghise?
    Utilizzare gli inserti TGMA/GIA con geometria Ke gradi IC5010 o IC428
  • Quali sono i gradi/geometrie consigliate per scanalatura e torni-scanalatura di alluminio?
    Utilizzare gli inserti GIPA/GIDA/FSPA con tagliente positivo, molto affilato e spoglia superiore lappata nei gradi IC20 o PCD ID5. Per larghezze di 6 - 8 mm, gli inserti tondi FSPA sono la prima scelta grazie al sistema di serraggio superiore.
  • Quali soluzioni utilizzare per scanalature interne di fori con diametro ridotto?
    • Diametri del foro da 2 a 10 mm: utilizzare inserti PICCO su utensili PICCO ACE.
    • Diametri del foro da 8 a 20 mm: utilizzare inserti GIQR su utensili MGCH.
    • Diametri del foro da 12 a 25 mm: utilizzare inserti GEMI/GEPI su utensili GEHIR.
  • Come si possono ridurre le vibrazioni?
    • Lavorare con la minima sporgenza possibile;
    • Lavorare con giri/min costanti;
    • Ridurre i giri/min se necessario;
    • Ridurre la larghezza dell'inserto per diminuire le forze di taglio;
    • Per larghezze da 6 e 8 mm, utilizzare le lame Anti-Vibranti WHISPERLINE.
  • In quali casi si consiglia di utilizzare gli utensili JETCUT con refrigerazione interna?
    Gli utensii JETCUT sono consigliati per qualsiasi pressione del refrigerante applicata (10 - 340 bar) e per qualsiasi lavorazione, dato che garantiscono un flusso del refrigerante costante ed affidabile direzionato esattamente sul tagliente, migliorando sensibilmente durate e gestione del truciolo.
    Troncatura
  • What are ISCAR’s priorities for PARTING OFF?
    • For general applications up to 38mm part diameter, use DO-GRIP style double-ended inserts
    • Above 38mm: Use TANG GRIP style –single ended insert
    • Up to 40mm diameter: Use PENTA IQ , a highly economical insert with 5 cutting edges
  • What is the best grade for machining steel (ISO P)?
    • IC808/908
    What is the best grade for machining stainless steel (ISO M)?
    • C830/5400
  • What is the best insert geometry / chipformer for machining steel?
    • Use "C" geometry, for example DGN 3102C
    What is the best insert geometry / chipformer for machining stainless steel?
    • Use "J" geometry, for example DGN 3102J
  • What are the most recommended tools and inserts for machining miniature parts?
    • First choice is ISCAR DO-GRIP style (double-ended inserts) which has positive geometry, for example DGN 3102J & DGN 3000P
      * Use tools with Short Head dimensions, for example DGTR 12B-1.4D24SH
    • Second choice is to use ISCAR PENTA CUT, an economical insert with 5 cutting edges, for example :
      * PENTA 24N200J020 IC1008 (insert)
      * PCHR 12-24 (tool)
  • What is the best tool for heavy duty applications?
    • Use ISCAR TANG GRIP (single ended) insert – choose width according to part diameter
    • For heavy duty applications ISCAR offers 5-12.7mm insert widths
    • IC830 is the most suitable grade
    • Recommended insert geometry /chipformer is "C" type
  • How to reduce the bur on the part?
    • Use an R or L style of insert - these inserts have a lead angle, so the cutting edge is not straight
    • Also use a positive cutting rake, for example: DGR -3102J-6D (6D =6 degrees lead angle)
    • It is highly recommended to reduce the feed by 50% at the final cut
  • How to improve insert lifespan?
    Analyze the failure phenomena and choose grade accordingly:
    Wear: use a harder grade such as IC808 or 807
    Breakages: choose a harder grade such as IC830
  • Which is the best insert for an interrupted cut?
    Use a negative cutting rake, "C" chipformer and IC830 grade
  • How to improve chip control when long chips appear?
    • Select the correct chipformer and cutting parameters in order to obtain good chip formation
    • Choose a more aggressive chipformer
    • To increase feed, please refer to ISCAR user guide
  • How to improve part straightness and surface?
    • Use neutral insert and a stable tool with the minimum overhang needed
    • Adjust the cutting parameters
    Foratura
  • What is the recommended coolant flow rate?
    Depends on diameter. For example, the minimal flow rate for 6 mm SUMOCHAM is 5 liters per minute. For 20 mm, the minimal flow rate require is 18 liters per minute. For more information, please refer to SUMOCHAM user guide in our catalogue, page 491.
  • What is the recommended coolant pressure?
    Depends on diameter and tool length. For example, the minimal pressure for 6 mm SUMOCHAM on 8xD is 12 bar. For 25 mm SUMOCHAM on 12xD, the minimal pressure required is 4.5 bar. For more information, please refer to SUMOCHAM user guide in our catalogue, page 491.
  • What straightness can be achieved with the SUMOCHAM line?
    With a stable set-up, deviation may vary from 0.03 mm to 0.05 mm for each 100 mm of drilling depth. Important: Achieved results may vary due to machine, fixture, adaptation, etc.
  • What is the correct deep drilling cycle with the pre-hole and the next tool?
    In order to avoid mistakes, it is best to prepare the pre-hole with the same geometry that you intend to use for the subsequent deep drilling operation. For a more detailed explanation, please refer to our catalogue, page 492.
  • Is it possible to make boring operation with SUMOCHAM?
    No, the SUMOCHAM family is not designed for boring operations. Failure of the tool and insert may occur.
  • What is the recommended geometry for titanium?
    The first choice is ICG. The second choice is ICP.
  • Is it possible to regrind SUMOCHAM heads?
    Yes, ICP/ICK/ICM/ICN geometries can be reground up to three times. Please see a detailed explanation on pages 502-504 in our catalogue. Note: FCP/HCP/ICG/ICH geometries can be reground only at TEFEN.
  • What is the maximum permitted run-out for SUMOCHAM?
    To achieve best performance and tool life, radial and axial run-out should not exceed 0.02 mm. A detailed user guide can be found in our catalogue, starting on page 490.
  • Is it possible to use SUMOCHAM for interrupted cut operations?
    SUMOCHAM cannot withstand interrupted cut operations. Loss of clamping force of the tool may happen, eventually leading to falling out of the insert.
  • What solution does ISCAR recommend for hard materials?
    For hard materials we recommend our SCD-AH solid carbide drills made from IC903 grade, or a semi-standard option for SUMOCHAM line, the ICH heads.
  • What type of adapter is recommended?
    The recommended adapter is the one that is most suited for the tool's shank. For example, if the shank is round, the most accurate adapter would be of the HYDRO type. Please refer to page 829 in our catalogue.
  • What should be the maximum exit be for the SUMOCHAM exit hole?
    The exit for the materials should not be more than 2-3 mm less than the diameter edge of the insert.
  • What is your recommended solution for aluminum machining?
    Answer: Depends on the application. SUMOCHAM line has ICN inserts, which offer a dedicated solution for rilling non-ferrous materials.
  • What are the criteria to look for to indicate when SUMOCHAM heads are worn out?
    It is best to measure wear on a microscope. Additional indicators for wear are illustrated on page 493 in our catalogue.
    Alesatura
  • Quando sono richieste operazioni di alesatura?
    Le operazioni di alesatura sono necessarie quando vengono richieste tolleranze e/o finiture superficiali molto strette e non possono essere raggiunte con la semplice foratura.
  • Per quali tolleranze sono disponibili gli alesatori standard?
    Gli alesatori standard ISCAR sono progettati per tolleranze IT7.
  • Gli alesatori standard sono disponibili per tutti i materiali?
    Gli alesatori standard sono disponili per la maggior parte dei materiali, ma per materiali ISO N e ISO S si consiglia di contattare direttamente ISCAR per la miglior soluzione possibile.
  • Qual è la durata media di un alesatore?
    Dato che molti fattori influiscono sulla durata (materiale, refrigerante, tolleranza, runout ecc) è molto difficile stimare la durata. Occorre quindi valutare ogni caso individualmente.
  • Risulta possibile alesare senza refrigerante?
    No. Alesare senza refrigerante è impossibile; la soluzione ideale è la refrigerazione interna, ma la refrigerazione esterna è un'opzione.
  • Quanto sovrametallo occorre lasciare prima dell'operazione di alesatura?
    Il sovrametallo dipende dal materiale lavorato, il diametro di lavorazione e l'utensile utilizzato per la preparazione del foro. In generale, può variare da 0.15 a 0.4 mm.
  • Qual è il maggior runout possibile del mandrino?
    Generalmente, il maggior runout è circa 0.01 mm, ma dipende anche da dimensioni e tolleranze richieste.
    ISO
  • Come incrementare la produttività per superleghe e materiali a base Nichel con i gradi ceramici ISCAR?
    ISCAR Offre un'ampia gamma di gradi ceramici, come IW7, per superleghe e materiali a base Nichel. I gradi ceramici ISCAR permettono di lavorare con velocità di taglio dieci volte superiori - da 150 m/min fino a 450 m/min. Questo incrementa sensibilmente la produttività.
  • Qual è la prima scelta delle geometrie ISCAR per lavorazioni di acciai?
    ISCAR ha introdotto tre nuove geometrie per finitura, lavorazioni medie e sgrossatura di acciai: F3P, M3P e R3P. Le geometrie, combinate ai gradi ISCAR SUMO TEC, assicurano maggior produttività, maggiori durate, miglior finitura superficiale e lavorazioni più affidabili. Le nuove geometrie generano temperature minori ed evitano il problema dell'incollamento del truciolo ad utensile e componenti. I trucioli vengono rotti in piccoli frammenti, evitando matasse intorno al pezzo e permettendo efficiente rimozione del truciolo dal convogliatore.
  • Come migliorare il controllo del truciolo con gli inserti CBN?
    Gli inserti CBN sono utilizzati principalmente per materiali con durezza tra 55 e 62 RC. Gli inserti CBN convenzionali offrono un'ampia gamma di riporti piani e brasati che producono trucioli lunghi e arricciati in lavorazioni di acciai duri. Questi trucioli possono danneggiare la finitura del pezzo. La soluzione ISCAR è un nuovo inserto CBN con formatruciolo rettificato che assicura un ottimo controllo del truciolo in finitura e lavorazioni medie con elevata finitura superficiale.
  • Come ridurre le vibrazioni in lavorazioni con barre di barenatura con sporgenze superiori a 4xD?
    ISCAR offre una gamma di barre anti-vibranti con meccanismo interno di smorzamento delle vibrazioni. Questo riduce fino ad eliminare le vibrazioni utilizzando barre con sporgenze elevate. La nuova linea anti-vibrante è chiamata WHISPERLINE.
  • Come incrementare la produttività per ghise grigie con i gradi ceramici ISCAR?
    La ghisa grigia è universalmente riconosciuta come il materiale più diffuso nell'industria automobilistica. Per le lavorazioni di ghise grigie, ISCAR propone un'ampia gamma di gradi ceramici come IS6. Il grado IS6 è stato sviluppato appositamente per incrementare la produttività in lavorazioni di ghise grigie.
  • Qual è la prima scelta delle geometrie ISCAR per lavorazioni di acciai inox?
    ISCAR ha introdotto 3 nuove geometrie: F3M, M3M e R3M per finitura, lavorazioni medie e sgrossatura di acciai inox che combinate ai gradi ISCAR SUMO TEC, assicurano maggior produttività, maggiori durate, miglior finitura superficiale e lavorazioni più affidabili. La geometria F3M è dotata di angolo di spoglia positivo per un taglio dolce, minori forze di taglio e maggiori durate. La geometria M3M per lavorazioni medie è dotata di tagliente rinforzato ed angolo di spoglia positivo per taglio dolce e minori forze di taglio. La geometria R3M per sgrossatura di acciai inox con tagliente rinforzato ed angolo di spoglia positivo per minori forze di taglio.
  • Qual è l'effetto del refrigerante ad alta pressione?
    Il vantaggio principale degli utensili JETCUT è di erogare il refrigerante direttamente sulla zona di taglio per assicurare una refrigerazione efficiente per migliorare il controllo del truciolo ed aumentare le durate. I maggiori vantaggi dell'alta pressioni si riscontrano in lavorazioni di materiali come superleghe, acciai inox, titanio ecc
    Gradi Ceramici & Inserti
  • How to increase productivity of Ni-based and other superalloys with ISCAR ceramic grades?
    ISCAR has a wide range of ceramic grades, for example IW7, for machining Ni-based and other superalloys. Our ceramic grades have the ability to work 10 times faster in cutting speed, starting from 150M/min and going up to 450M/min which is 10 times higher than any conventional carbide inserts. This increases productivity dramatically.
  • Which chip formers does ISCAR recommend for steel machining?
    ISCAR has introduced three new chip formers for finishing medium and rough turning of steel: F3P, M3P and R3P. Combined with ISCAR’s SUMO TEC grades, the chip formers offer higher productivity, longer tool life, improved workpiece quality and more reliable performance. The new chip formers generate less heat and avoid the problem of chips attaching themselves to cutting tools and components. Chips are broken down into smaller pieces, preventing them from tangling around the workpiece and enabling more efficient removal from conveyor belts.
  • How to improve chip control with CBN inserts?
    CBN inserts are mainly for machining hard materials with high hardness - from 55 and up to 62 RC materials. Conventional CBN inserts offer a wide range of brazed and flat tips that produce long and curled chips during the turning machining of hard steel, resulting in long chips that scratch the work piece and damaging the surface quality. The ISCAR solution is a new CBN insert with grinded chip breaker on the cutting edge, which provides excellent chip control in medium to finishing applications with high surface quality.
  • How to reduce vibrations on boring bars with a high overhang of more than 4xBD?
    Throughout the world, machinists deal daily with problematic vibrations. ISCAR’s Research and Development department has designed and developed the WHISPERLINE range of anti-vibration tools to resolve this issue, including a boring bar with the dampening mechanism inside the body that eliminates and reduces vibrations when using bars with a high overhang.
  • How to increase productivity of gray cast iron with ISCAR ceramic grades?
    The most popular material in the automotive industry is gray cast iron. For machining gray cast iron, ISCAR offers a wide range of ceramic grades including IS6 SIALON inserts. Developed especially to increase productivity in gray cast iron, the IS6 SAILON grade can work 3 or 4 times faster in cutting speed - from 400M/min and up to 1200M/min which is 3 times higher than any conventional carbide inserts. This increases productivity dramatically.
  • What is ISCAR’s first choice in chip formers for stainless steel?
    ISCAR has introduced three new chip formers: F3M, M3M and R3M for finishing, medium and rough turning stainless steel. Combined with the most advanced SUMOTEC grades, the chip formers provide higher productivity, tool life and performance reliability. The F3M Chipformer has positive rake angles for smooth cutting, reduced cutting forces and insert wear, leading to dramatically increased tool life. The M3M Chipformer is designed for medium machining of stainless steel with reinforced cutting edge and Positive rake angle, to reduce cutting forces and ensure smooth cutting. The R3M Chipformer for chip breakers is designed for rough machining of stainless steel with reinforced cutting edge and positive rake angle, to reduce cutting forces.
  • What is the effect of high-pressure coolant?
    JETCUT tools have the ability to supply coolant directly into the cutting zone, ensuring high coolant efficiency, improved chip control, reduced heat and longer insert life. The high pressure coolant effect is applied to the machining of sticky and gummy materials such as super alloys, stainless steel, titanium etc.
    Filettatura
  • Qual è il grado più adatto alla lavorazione di acciai inox
    IC1007
  • Qual è il grado più adatto alla lavorazione di superleghe?
    IC806
  • Qual è il grado più adatto alla lavorazione su macchine con velocità ridotta ed instabili?
    IC228
  • Qual è il minor passo consigliato per il profilo del filetto?
    Maggiore della dimensione dell'oning
  • Perché il rompitruciolo non agisce?
    Apparentemente la profondità di taglio non è sufficiente, quindi il rompitruciolo è inefficiente
  • Come si può migliorare il controllo del truciolo?
    Migliorare il controllo del truciolo è possibile con la corretta scelta dell'avanzamento: Radiale; Assiale; Alternato Radiale Assiale
  • Come si possono ridurre i tempi di processo?
    Utilizzare inserti multi-dente (2M, 3M). Questi inserti assicurano un minor numero di passate, riducendo i tempi di taglio. Sono disponibili per profili e passi più diffusi e rappresentano un'ottima celta per filettature economiche in produzioni massive.
  • Qual è la differenza tra profilo parziale e profilo completo?
    Profilo Parziale:
    • può lavorare per differenti filetti standard ed è adatto ad un'ampia gamma di passi con stesso angolo (60° o 55°).
    • Inserti con raggi ridotti adatti per il minor passo disponibile della gamma.
    • Per completare il diametro interno/esterno è necessaria un'operazione aggiuntiva.
    • Sconsigliato per lavorazioni massive.
    • Elimina la necessità di differenti inserti.
    Profilo completo:
    • lavora il profilo completo del filetto.
    • Adatto ai passi più diffusi.
    • Ideale per produzioni massive.
    • Lavora un singolo profilo.
  • Come scegliere la piastrina corretta?
    Utilizzare piastrine con inclinazione positiva in lavorazioni di filetti destri con utensili destri e di filetti sinistri con utensili sinistri. Utilizzare piastrine con inclinazione negativa in lavorazioni di filetti destri con utensili sinistri e di filetti sinistri con utensili destri. Utilizzare piastrine AE per utensili esterni destri e interni sinistri. Utilizzare piastrine Al per utensili interni destri ed esterni sinistri.
    Gradi
  • What is a tool material?
    In cutting tools, a tool material is the material from which the active (cutting) part of a tool is produced. This is the material that directly cuts the workpiece during machining.
  • How does ISCAR designate its tool materials?
    ISCAR’s system of designating tool material grades uses letters and numbers. The letters indicate the material group:
    IB – cubic boron nitride (CBN)
    IC – cemented carbide and cermet
    ID – polycrystalline diamond (PCD)
    IS – ceramics
    DT – cemented carbide with dual (CVD+PVD) coating
  • Cos'è un grado di metallo duro?
    Una combinazione di carburo, ricopertura e trattamento di post-ricopertura. Solo uno di questi componenti - il carburo - è l'elemento essenziale del grado. Gli altri sono opzionali. Il carburo cementato è un materiale composito che comprende particelle cementate da materiale legante (principalmente cobalto). I carburi cementati maggiormente utilizzati nel mondo dell'utensileria integrano un rivestimento anti-usura e sono conosciuti come "gradi ricoperti". Ci sono vari processi di trattamento che vengono eseguiti sul carburo già ricoperto (per esempio, la superficie della spoglia di un inserto). "Carburo cementato" può riferirsi sia al substrato di un grado ricoperto sia ad un grado non ricoperto.
  • ISCAR come classifica i gradi?
    Lo standard internazionale ISO 513 classifica i materiali da taglio in base alla gamma applicativa in riferimento ai materiali da lavorare. ISCAR ha adottato questo standard e utilizza lo stesso approccio nello sviluppo di nuove soluzioni. I carburi cementati sono materiali molto duri che possono tagliare la maggior parte dei materiali, che sono più soffici. Alcuni gradi dimostrano migliori performance rispetto ad altri in lavorazioni di specifiche classi di materiali.
  • I gruppi applicativi dei gradi a norma ISO 513 includono lettere e cifre dopo la lettera? Cosa significano?
    Le lettere definiscono la classe dei materiali da lavorare. Le cifre definiscono il rapporto durezza-tenacità su scala arbitraria. Ad un numero maggior corrisponde un maggior grado di tenacità ed un minor grado di durezza.
  • Cosa è la tecnologia SUMOTEC?
    SUMO TEC è uno specifico trattamento di post-ricopertura sviluppato da ISCAR. Il trattamento assicura superfici uniformi, minimizzando gli stress interni e le impurità del rivestimento. In rivestimenti CVD, a causa della differenza nei coefficienti di espansione termica tra il substrato ed i livelli di rivestimento, vengono generati stress di tensione. Anche in rivestimenti PVD si generano impurità. Questi fattori influiscono negativamente sul rivestimento, riducendo le durate inserto. Le tecnologie di post-ricopertura SUMOTEC riducono sensibilmente fino a rimuovere questi difetti, assicurando così maggiori durate e maggior produttività.
  • Perchè i rivestimenti PVD con nano strati sono considerati così efficienti?
    I rivestimenti PVD sono stati introdotti alla fine degli '80. Con l'utilizzo delle più avanzate nanotecnologie, i rivestimenti PVD hanno fanno enormi passi in avanti nella risoluzione di problemi molto complessi. Infatti è stato possibile sviluppare nuove tipologie di rivestimenti nano stratificati resistenti all'usura. Questi rivestimenti sono composti da combinazioni di strati con spessore fino a 50nm (nanometri) che incrementano sensibilmente la forza del rivestimento.
  • La descrizione dei gradi ISCAR generalmente inizia con le lettere "IC". Come mai il grado DT7150 (DO-TEC) ha una descrizione differente?
    La tecnologia di rivestimento ha due principali aree - CVD: deposizione chimica da vapore e PVD: deposizione fisica da vapore. Lo sviluppo tecnologico permette di combinare entrambi i metodi - CVD e PVD - per i rivestimenti inserto, che permette un maggior controllo delle proprietà del rivestimento. Il grado ISCAR DT7150 è composto da un tenace substrato e da un doppio rivestimento MT CVD (CVD a Media Temperatura) e TiAlN PVD. Il grado è stato inizialmente sviluppato per incrementare la produttività in lavorazioni di ghise dure.
    Materiali
  • When giving recommendations about cutting data, how does ISCAR classify engineering materials?
    ISCAR material groups are organized in accordance with international standard ISO 513 Classification and application of hard cutting materials for metal removal with defined cutting edges — Designation of the main groups and groups of application and technical guides VDI 3323 Anwendungseignung von Harten Schneidstoffen (English: Information on applicability of hard cutting materials for machining by chip removal). VDI (Verein Deutscher Ingenieure) is the Association of German Engineers.
  • The ISO 513 standard specifies cutting tools intended for machining stainless steel as the tools that apply to Group M. Is this correct?
    In ISO 513, Group M (yellow identification color) relates to the tools for machining stainless steel of austenitic and austenitic/ferritic (duplex) structure. Ferritic and martensitic stainless steel belong to Group P (blue color) and starting cutting data should be set accordingly.
  • Is machining titanium like machining austenitic stainless steel?
    Commercially pure titanium and, with some applications, α- or α-β- titanium alloys may be machined like austenitic stainless steel but not treated β- and near-β- alloys.
  • Why is the machinability of materials from ISO M and S groups considered together?
    These materials are difficult-to-cut materials and have common features that affect machinability: low thermal conductivity and high specific cutting force.
  • Does cast iron relate to ISO Group K?
    The majority of cast iron grades (grey, nodular, malleable) relate to Group K.
    When machining hardened or chilled cast iron, appropriate cutting tools (and corresponding cutting data) should be chosen as recommended for Group H.
    Austempered ductile iron (ADI) in its soft condition is connected with Group P.
    Austempered ductile iron (ADI) in its hardened condition is connected to Group H.